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Software effort estimation plays a critical role in project management. Erroneous results may lead to overestimating or
underestimating effort, which can have catastrophic consequences on project resources. Machine-learning techniques are in-
creasingly popular in the field. Fuzzy logic models, in particular, are widely used to deal with imprecise and inaccurate data. 1e
main goal of this research was to design and compare three different fuzzy logic models for predicting software estimation effort:
Mamdani, Sugeno with constant output, and Sugeno with linear output. To assist in the design of the fuzzy logic models, we
conducted regression analysis, an approach we call “regression fuzzy logic.” State-of-the-art and unbiased performance evaluation
criteria such as standardized accuracy, effect size, and mean balanced relative error were used to evaluate the models, as well as
statistical tests. Models were trained and tested using industrial projects from the International Software Benchmarking Standards
Group (ISBSG) dataset. Results showed that data heteroscedasticity affected model performance. Fuzzy logic models were found
to be very sensitive to outliers. We concluded that when regression analysis was used to design the model, the Sugeno fuzzy
inference system with linear output outperformed the other models.

1. Introduction and Motivation

Generally, estimating project resources continues to be a
critical step in project management, including software
project development [1]. Ability to predict the cost or effort
of a software project has a direct impact on management
decision to accept or reject any given project. For example,
overestimating software costs may lead to resource wastage
and suboptimal delivery time, while underestimation may
lead to project understaffing, over budgeting expenses, and
delayed delivery time [2, 3]. 1is can lead to loss of contracts
and thus potentially substantial financial losses. Although, in
practice, there is a difference between the expressions,
“software cost estimation” and “software effort estimation,”
many authors use either to express the effort required to
build a software project measured in person-hours. In this
paper, the two expressions are used interchangeably.

Accurate estimation of software resources is very chal-
lenging and many techniques have been investigated in
order to improve the accuracy of software estimationmodels
[4, 5]. 1e techniques used in software effort estimation
(SEE), are organized into three main groups: expert judg-
ment, algorithmic models, and machine learning [6]. Expert
judgment depends on the estimator’s experience, while al-
gorithmic models use mathematical equations to predict
software cost. On the other hand, machine-learning models
are based on nonlinear characteristics [4]. Algorithmic
models andmachine-learningmodels depend on project and
cost factors. Among machine-learning models, the fuzzy
logic model, first proposed by Zadeh [7], has been in-
vestigated in the area of software cost estimation by many
researchers who have proposed models that outperform the
classical SEE techniques [5, 6, 8]. Even so, significant lim-
itations of such models have been identified:
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(i) When examined individually, the performance of
different fuzzy logic models seem to fluctuate when
tested on different datasets, which can in turn cause
confusion around determining the best model [9].

(ii) Most fuzzy logic models were evaluated using mean
magnitude of relative error (MMRE), mean mag-
nitude of error relative to the estimate (MMER),
relative error (RE), and prediction level (Pred). All
these performance evaluation criteria are consid-
ered biased [10–12].

(iii) Several previous studies did not use statistical tests
to confirm if the proposed models were statistically
different from other models. Failure to employ
proper statistical tests would invalidate the results
[13].

(iv) Effective design of Sugeno fuzzy logic models with
linear outputs, which are scarce in the field of
software effort estimation, is a challenging task,
especially for such models with multiple inputs
where identifying the number of input fuzzy sets is
in itself challenging.

To address the above limitations, we developed and
evaluated three different fuzzy logic models using proper
statistical tests and identical datasets extracted from the
International Software Benchmarking Standards Group
(ISBSG) [14], according to the evaluation criteria proposed
by Shepperd and MacDonell [10]. 1e three models were
compared using a multiple linear regression (MLR) and
feed-forward artificial neural network models developed
with the same training and testing datasets used for the fuzzy
logic models. 1is MLR type model was taken to be the base
model for SEE.

Among the challenges in designing fuzzy logic models is
to determine the number of model inputs and the parameters
for the fuzzy Sugeno linear model. To tackle these challenges,
we proposed regression fuzzy logic, where regression analysis
was used to determine the optimal number of model inputs,
as well as the parameters for the fuzzy Sugeno linear model.
Note that our regression fuzzy logic (RFL) model should not
be confused with fuzzy regression. 1e latter is actually a
regression model that uses fuzzy logic as an input layer [15],
whereas RFL is a fuzzy model that uses regression as an input
layer. Regarding the fuzzy Sugeno linear model, (n + 1) pa-
rameters are required if the number of inputs is n. MLR
models are used to find the (n + 1) parameters.

In this study, we investigated the following research
questions.

RQ1: What is the impact of using regression analysis to
tune the parameters of fuzzy models?

To answer this question, we used stepwise regression to
determine the number of model inputs and multiple linear
regression to adjust the parameters of the Sugeno fuzzy linear
model. 1en, the three fuzzy logic models, as well as the
multiple linear regression model, were evaluated using four
datasets based on several evaluation performance criteria, such
as themean absolute error, mean balanced relative error, mean
inverted balanced relative error, standardized accuracy, and

the effect size. Statistical tests such as theWilcoxon test and the
Scott-Knott test were used to validate model performance.1e
mean error of all models was evaluated to determine if the
models were overestimating or underestimating.

RQ2: How might data heteroscedasticity affect the
performance of such models?

Heteroscedasticity exists as a problem when the vari-
ability of project effort increases with projects of the same
size. To answer this question, we filtered the ISBSG dataset
and divided it into four datasets based on project pro-
ductivity (effort/size). Homoscedastic datasets are those that
have very few variations in project productivity. We studied
whether the performance of each model fluctuates when a
heteroscedasticity problem exists.

RQ3: How do outliers affect the performance of the
models?

To answer this question, we conducted experiments with
datasets containing outliers and then repeated the experi-
ments with the outliers removed. We studied the sensitivity
of all four models to outliers.

In real life, a machine-learning software estimation
model has to be trained on historical datasets. 1e main
objectives of RQ2 and RQ3 are to show that data het-
eroscedasticity and outliers have a big impact on the
performance of the fuzzy-regression estimation models.
1is would be very helpful in organizations where they
have several historical projects. 1is implies that data
cleansing, such as removing outliers and minimizing the
data heteroscedasticity effect, would be very useful before
training the machine-learning prediction model. So,
identifying these characteristics is of paramount impor-
tance, and this is precisely what best-managed organi-
zations are interested in for estimation purposes. When
the software requirements are in such a state of un-
certainty, best-managed organizations will work first at
reducing these uncertainties of product characteristics.
For instance, in the medical field, data cleansing is highly
important. Causes and effects are identified within a
highly specialized context within very specific parame-
ters, and generalization is avoided outside of these se-
lected limitations and constraints.

1e contributions of this paper can be summarized as
follows:

(i) To the best of our knowledge, this is the first SEE
study that compares the three different fuzzy logic
models: Mamdani fuzzy logic, Sugeno fuzzy logic
with constant output and Sugeno fuzzy logic with
linear output. Both the training and testing
datasets were the same for all models. In addition,
the three fuzzy logic models were compared to an
MLR model. 1e datasets are from the ISBSG
industry dataset. 1e algorithm provided in Sec-
tion 4 shows how the dataset was filtered and
processed.

(ii) Investigation of the use of regression analysis in
determining the number of model inputs, as well as
the parameters of the Sugeno model with linear
output. We call this approach, “regression fuzzy.”
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(iii) Test the effect of outliers on the performance of
fuzzy logic models.

(iv) Investigation of the influence of the hetero-
scedasticity problem on the performance of fuzzy
logic models.

1e paper is organized as follows. Section 2 summarizes
related work in the field. Section 3 presents additional
background information on techniques used in the exper-
iments. 1e preparation and characteristics of the datasets
are defined in Section 4. Section 5 demonstrates how the
models were trained and tested. Section 6 discusses the
results. Section 7 presents some threats to validity and lastly,
Section 8 concludes the paper.

2. Related Work

Software effort estimation (SEE) plays a critical role in
project management. Erroneous results may lead to over-
estimating or underestimating effort, which can have cat-
astrophic consequences on project resources [16]. Many
researchers have studied SEE by combining fuzzy logic (FL)
with other techniques to develop models that predict effort
accurately. Table 1 lists research in FL related to our work.

Table 1 also shows many studies that used datasets from
the 1970s to the 1990s, such as COCOMO, NASA, and
COCOMO II, to train and test FL models, and compares
performance with linear regression (LR) and COCOMO
equations. Moreover, most measured software size as
thousands of line of codes (KLOC), several used thousands
of delivered source instruction (KDSI) and two used use case
points (UCP).

Most studies showed promising results for fuzzy logic
(FL) models. Much of the research focus was on Mamdani
fuzzy logic models rather than Sugeno fuzzy logic. Only one
paper studied the difference between MLR, Mamdani fuzzy
logic, and Sugeno fuzzy logic with constant parameters [29].
Our study is the first to compare Mamdani to Sugeno with
constant output and Sugeno with linear output. 1e column
“standalone” in Table 1 indicates whether an FL model was
used as a standalone model to predict software effort or,
alternatively, used in conjunction with other models. In
some papers, FL models were compared to neural network
(NN), fuzzy neural network (FNN), linear regression (LR),
and SEER-SEM models. 1e evaluation criteria used in
related work can be summarized as follows:

(i) AAE: average absolute error
(ii) ARE: average relative error
(iii) AE: absolute error
(iv) Pred (x): prediction level
(v) MMER: mean magnitude of error relative to the

estimate
(vi) MMRE: mean magnitude of relative error
(vii) VAF: variance-accounted-for is the criterion

measuring the degree of closeness between esti-
mated and actual values

(viii) RMSE: root mean squared error

(ix) MdMER: medianmagnitude of error relative to the
estimate

(x) MdMRE: median magnitude of relative error
(xi) ANOVA: analysis of variance
(xii) RE: relative error
(xiii) MSE: mean squared error

Several limitations are evident in the reported work.
First, the majority of the above studies used single datasets
for model evaluations. 1is is a major drawback since the
performance of machine-learning models might excel on
one dataset and deteriorate on other datasets [39]. Second,
most of the models in Table 1 were tested using only MMRE,
MMER, and Pred (x). Moreover, researchers concentrated
on Mamdani-type fuzzy logic and ignored Sugeno fuzzy
logic, especially Sugeno with linear output. Furthermore,
very few studies used statistical tests to validate their results.
Myrveit and Stensrud [13] state that it is invalid to confirm
that one model is better than another without using proper
statistical tests.

Our paper addressed the above limitations. We de-
veloped and compared three different fuzzy logic models
using four different datasets. We also used the statistical tests
and evaluation criteria proposed by Shepperd and Mac-
Donell [10].

3. Background

3.1. Fuzzy Logic Model. In attempting to deal with un-
certainty of software cost estimation, many techniques have
been studied, yet most fail to deal with incomplete data and
impreciseness [40]. Fuzzy logic has been more successful
[17, 41]. 1is is due to the fuzzy nature of fuzzy logic, where
model inputs have multiple memberships. Fuzzy logic tends
to smoothen the transition from one membership to another
[7].

Fuzzy logic (FL) models, generally, are grouped into
Mamdani models [42] and Sugeno models [43]. Inputs in FL
are partitioned to membership functions with shape types
such as triangular, trapezoidal, bell, etc., which represents
how input points are mapped to output [44]. 1e output of
an FL model depends on the model type, i.e., Mamdani or
Sugeno. Mamdani FL has its output(s) partitioned to
memberships with shapes [45, 46]. On the other hand, in
Sugeno models (aka Takagi-Sugeno-Kang model), the out-
put is represented as a linear equation or constant. 1e
Sugeno fuzzy format [43] is given below.

If f(x1 A1, . . . , xk is Ak) is the input group, then the
output group is y � g(x1, . . . , xk). 1us, the rules are as
follows:

If x1 is A1 and xK is Ak, then y � p0 + p1x1 + · · · +

pkxk, where k is the number of inputs in the model and pn are
the coefficients of the linear equation. When the output
equation is zero-order, y will be equal to a constant value. In
both model types, fuzzy logic has four main parts [47]:

(i) Fuzzification, which maps the crisp input data to
fuzzy sets in order to obtain the degree of equivalent
membership.
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(ii) Rules, where expert knowledge can be expressed as
rules that define the relationship between the in-
put(s) and output.

(iii) Aggregation, which involves firing the rules
mentioned above. 1is occurs by inserting data for
the fuzzy model, after which the resulting shapes
from each output are added to generate one fuzzy
output.

(iv) Defuzzification, which involves conversion of the
fuzzy output back to numeric output.

3.2. Multiple Linear Regression Model. Regression is one
method for representing the relationship between two
kinds of variables [48]. 1e dependent variable, repre-
senting the output, is the one that needs to be predicted.
1e others are called independent variables. Multiple
regression involves many independent variables. A lin-
ear relationship between the predicted (dependent) var-
iable and the independent variables can be expressed as
follows:

Y � β0 + β1X1 + β2X2 + · · · + βpXp + ε, (1)

Table 1: Related work on fuzzy logic (FL) models for software effort estimation.

Ref. no
Dataset Standalone

(yes + type/no)
Comparison
conducted

Software
size unit

Evaluation
criteria

Publication
yearSource Size

1. [17] COCOMO’81 63 projects Yes/Sugeno FL, COCOCMO
models KDSI AAE, ARE 2004

2. [18] Artificial +COCOMO81 53 projects Yes/Mamdani FL, COCOMO N&C LOC AE, Pred (0.25) 2005

3. [19] Private 41 modules Yes/Mamdani FL, LR LOC MMER, Pred
(0.20) 2005

4. [20] NASA 18 projects Yes/Sugeno FL, LR KLOC MMRE, VAF,
RMSE 2006

5. [6] Collected by experiment
team from 37 developers 125 projects Yes/Mamdani FL, LR N&C LOC MMER, MMRE,

Pred (0.25) 2006

6. [21] Collected by experiment
team from 37 developers 125 projects Yes/Mamdani

FL (different
memberships

functions types), LR
N&C LOC MdMER, Pred

(0.25) 2007

7. [22] From source no. 3 & 6 10 projects Yes/Mamdani No comparison LOC MMRE 2009
8. [23] Private 200 projects Yes/Mamdani FL, LR N&C LOC MMER 2010
9. [24] Artificial +COCOMO81 — Yes/Mamdani COCOMO/FL KDSI MMRE 2010

10. [25] Private 24 projects No/Sugeno Use case point (UCP) UCP MMRE, Pred
(0.35) 2011

11. [26] Private 24 projects No/Mamdani Use case point (UCP) UCP MMRE, Pred
(0.35) 2011

12. [27]

COCOMO I, NASA98,
datasets, 4 project from
software company in

Malaysia

160 projects No/Sugeno FL-COCOMO II/
COCOMO II KSLOC MMRE, Pred

(0.25) 2011

13. [28] Collected by experiment
team from 74 developers 231 projects Yes/Mamdani FL, LR

N&C
LOC,
reused
code

MMER,
+ANOVA 2011

14. [29] Collected by experiment
team from 37 developers 125 projects Yes/Mamdani +

Sugeno_constant
FL-Mamdani, FL-

Sugeno, LR N&C LOC MMER, Pred
(0.25) 2013

15. [30] COCCOMO NASA 7 projects Yes, FL FL/NN LOC MMRE, Pred
(0.25) 2013

16. [31] COCOMO 69 projects No FNN, COCOMO KESLOC MMER 2003
17. [32] Artificial — No/Mamdani COCOMO,81 KLOC RE 2000

18. [33] COCOMO’81 69 projects No FNN, COCOMO KSLOC Pred (0.25),
MMER 2007

19. [34] COCOMO 21 projects No FNN, ANN,
COCOMO KLOC MMRE, Pred

(0.25), MdMRE 2007

20. [35] ISBSG release 9 3,024 projects No FNN SLOC MMRE, MMER,
Pred (0.25) 2009

21. [36] NASA 31 projects No FNN/other tools DKLOC RMSE, MMRE 2012

22. [37] NASA+ industrial 99 projects No FNN-SEERSEM/
SEERSEM KLOC

MMRE, Pred
(0.3), Pred (0.5),

MSE
2015

23. [38] Private — No NN UCP MMRE, Pred,
MMER 2012
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where Y is the dependent variable, X1, X2, . . . , Xp are the
independent variables for p number of variables and
β1, β2, . . . , βp are constant coefficients that are produced
from the data using different techniques, such as least square
error or maximum likelihood, that aim to reduce the error
between the approximated and real data. Regardless of
technique, error will exist, which is represented by ε in the
above equation.

3.3. Evaluation Criteria. Examining the prediction accuracy
of models depends upon the evaluation criteria used. Cri-
teria such as the mean magnitude of relative error (MMRE),
the mean magnitude of error relative to the estimate
(MMER), and the prediction level (Pred (x)) are well known,
but may be influenced by the presence of outliers and be-
come biased [10, 49]; therefore, other tests were employed in
order to improve the efficiency of the experiments.

(i) Mean absolute error (MAE) calculates the average of
differences in the absolute value between the actual
effort (e) and each predicted effort (e). 1e total
number of projects is represented as N.

MAEi �
1
N



N

i�1
ei − ei


. (2)

(ii) Standardized accuracy (SA) measures the mean-
ingfulness of model results, which ensures our model
is not a random guess. More details can be found in
[10].

SA � 1−
MAE
MAEp

, (3)

where MAEp is the mean value of a large number
runs of random guessing.

(iii) Effect size (Δ) tests the likelihood the model predicts
the correct values rather than being a chance
occurrence.

Δ �
MAE−MAEp

SP0
, (4)

where SP0 is the sample standard deviation of the
random guessing strategy.

(iv) Mean balance relative error (MBRE) is given by

MBRE �
1
N



N

i�1

AEi

min ei, ei( 
, (5)

where AEi is the absolute error and is calculated as
AEi � |(ei − ei)|.

(v) Mean inverted balance relative error (MIBRE) is
given by

MIBRE �
1
N



N

i�1

AEi

max ei, ei( 
. (6)

(vi) Mean error (ME) is calculated as

ME �
1
N



N

i�1
ei − ei( . (7)

4. Datasets

For this research, the ISBSG release 11 [14] dataset was
employed to examine the performance of the proposed
models. According to Jorgensen and Shepperd [1], utilizing
real-life reliable projects in SEE increases the reliability of the
study. 1e dataset contains more than 5,000 industrial
projects written in different programming languages and
developed using various software development life cycles.
Projects are categorized as either a new or enhanced de-
velopment. Also, the software size of all projects was
measured in function points using international standards
such as IFPUG, COSMIC, etc. 1erefore, to make the re-
search consistent, only projects with IFPUG-adjusted
function points were considered. 1e dataset contains
more than 100 attributes for each project and includes such
items as: project number, project completion date, software
size, etc. Also, ISBSG ranks project data quality into four
levels, “A” to “D,” where “A” indicates projects with the
highest quality followed by “B” and so on.

After examining the dataset, we noticed that while some
projects had similar software size, effort varied extensively.
1e ratio between software effort (output) and software size
(the main input) is called the productivity ratio. We noticed
a substantial difference in the productivity ratio among
projects with similar software size. For instance, for the same
adjusted function point (AFP), productivity (effort/size)
varied from 0.2 to 300. 1e large difference in pro-
ductivity ratio makes the dataset heterogeneous. Applying
the same model for all projects was therefore not practical.
To solve this issue, projects were grouped according to
productivity ratio making the datasets more homogeneous.
1e main dataset was divided into subdatasets, where
projects in each subdataset had only small variations in
productivity [50]. For this research, the dataset was divided
into three datasets as follows:

(i) Dataset 1: small productivity ratio (P), where
0.2≤P< 10;

(ii) Dataset 2: medium productivity projects where
10≤P< 20; and

(iii) Dataset 3: high productivity (P≥ 20).

Also, to evaluate the effect of mixing projects with
different productivities together, a fourth dataset was added,
which combined all three datasets. Dataset 3 was not as
homogeneous as the first two, since productivity in this
dataset varied between 20 and 330. 1is dataset was used to
study the influence of data heteroscedasticity on the per-
formance of fuzzy logic models.

Given the ISBSG dataset characteristics discussed above, a
set of guidelines for selection of projects was needed to filter
the dataset. 1e attributes chosen for analysis were as follows:
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(i) AFP: adjusted function points, which indicates
software size

(ii) Development type: it indicates whether the project
is a new development, enhancement, or
redevelopment

(iii) Team size: it represents the number of members in
each development team.

(iv) Resource level: it identifies which group was in-
volved in developing this project such as develop-
ment team effort, development support, computer
operation support, and end users or clients

(v) Software effort: the effort in person-hours

In software effort estimation, it is important to choose
nonfunctional requirements as independent variables, in
addition to functional requirements [51]. All of the above
features are continuous variables except Resource level
which is categorical. 1e original raw dataset contained 5052
projects. Using the following guidelines to filter the datasets,
projects were selected based on the following:

(1) Data quality: only projects with data quality A and B
as recommended by ISBSG were selected, which
reduced dataset size to 4,474 projects

(2) Software size in function points
(3) Four inputs: AFP, team size, development type, and

resource level; and one output variable: software
effort

(4) New development projects only: projects that were
considered enhancement development, re-
development, or other types were ignored, bringing
the total projects to 1,805

(5) Missing information: filtering the dataset by deleting
all the rows with missing data leaving only 468 fully
described projects

(6) Dividing the datasets according to their productivity
as explained previously to generate three distinct
datasets and a combined one

(7) Dividing each dataset into testing and training
datasets by splitting them randomly into 70%/30%,
where 70% of each dataset was used for training and
30% for testing

1e resulting datasets after applying steps 6 and 7:

(a) Dataset 1: with productivity 0.2≤P< 10 consisted of
245 projects with 172 projects for training and 73
projects for testing

(b) Dataset 2: with productivity 10≤P< 20 consisted of
116 projects with 81 projects for training and 35
projects for testing

(c) Dataset 3: with productivity higher than or equal to
20 (P≥ 20) consisted of 107 projects with 75 projects
for training and 32 projects for testing

(d) Dataset 4: combining projects from all three datasets
consisted of 468 projects with 328 projects for
training and 140 projects for testing

Table 2 presents some statistical characteristics of the
effort attribute in the four datasets. Before using the dataset,
a check is needed as to whether or not the attributes data
type can be used directly in the models. As discussed in
Section 3, FL models divide the input into partitions to
ensure smoothness of transition among input partitions;
these inputs should be continuous. If one of the inputs is
categorical (nominal), a conversion to a binary input is
required [52]. 1us, the resource attribute, a categorical
variable, was converted to dummy variables. A further
operation was performed on the datasets to remove outliers
from the testing dataset.1e aim here was to study the effects
on the results of statistical and error measurement tests. In
other words, we analyzed the datasets with outliers, then
without outliers. A discussion of the results is presented in
Section 6. Figure 1 shows the boxplot of the four datasets,
where stars represent outliers. Datasets 1, 3, and 4 had
outliers, while Dataset 2 had none. Removing the outliers
from Datasets 1, 3, and 4 reduced their sizes to 65, 29, and
130, respectively, and Dataset 2 remained unchanged.

5. Model Design

In this section, the methods used to design the four models,
MLR, Sugeno linear FL, Sugeno constant FL, and Mamdani
FL, are presented. 1e training dataset for each of the four
datasets was used to train each model and then tested using
the testing datasets. Performances were analyzed and results
are presented in Section 6.

As mentioned in Section 4, since all projects have the
same development type, the latter was removed as an input,
such that three inputs remained for each model. 1ey are
software size (AFP), team size, and resource level. 1e
resource-level attribute was replaced by dummy variables
since it was a categorical variable. A stepwise regression was
applied to exclude input variables that were not statistically
significant. 1e same inputs were then utilized for all models
in each dataset.

A multiple linear regression model was generated from
every training dataset. 1e fuzzy logic models were then
designed using the same input dataset.

To design the Mamdani FL model, the characteristics of
each input were examined first, specifically the min, max,
and average. 1is gives us a guideline as to the overall shape
of memberships. 1en, considering that information, all
inputs and output were divided into multiple overlapping
memberships. Simple rules were written to enable output
generation. Usually, simple rules take each input and map it
to the output in order to determine the effect of every input
on the output. 1is step can be shortened if some knowledge
of the data is available. In our case, since this knowledge
existed, setting the rules was expedited.1en, to evaluate and
improve the performance of the model, training datasets
were randomly divided into multiple sections, and a group
was tested each time. Rules and memberships were updated
depending on the resulting error from those small tests.

Sugeno constant FL has similar characteristics to Mam-
dani FL, so the same steps were followed except for the output
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design. 1e output was divided into multiple constant
membership functions. Initial values for each membership
function were set by dividing the output range into multiple
subsections and then calculating the average of each sub-
section.1en, the performance of the model was improved by
utilizing the training datasets as explained previously.

Lastly, the Sugeno linear FL model was designed. As
explained in Section 3, this model is a combination of fuzzy
logic and linear regression concepts, each of which is reflected
in the design. 1e steps for designing the input memberships
were similar to the steps followed in theMamdani and Sugeno
constant models, whereas the output required a different
methodology. 1e output was divided into multiple mem-
berships, where each membership was represented by a linear
regression equation. Hence, the output of the dataset was
divided into corresponding multiple overlapping sections,
and a regression analysis was applied to each, in order to
generate the MLR equation. Subsequently, model perfor-
mance was improved using the training dataset, as mentioned
previously. Note that, overimproving the models using
training datasets leads to overfitting, where training results are
excellent, but testing results are not promising. 1erefore,
caution should be taken during the training steps. After
training, all the models were tested on the testing datasets that
were not involved in the training steps.

A summary of the system is shown in Figure 2.
Table 3 depicts the membership functions (mfs) of the

Mamdani, Sugeno constant, and Sugeno linear models in the
presence of outliers. Tables 4–6 display the parameters of the
fuzzy logic models for Dataset 1, Dataset 2, and Dataset 3,
respectively. Table 7 displays the parameters of the ANN and
MLR models.

Regarding the software tools used in this research,
MATLAB was used in designing fuzzy logic and neural
network models. For statistical tests and analysis, MATLAB,
Minitab, and Excel have been used. Testing results are an-
alyzed and discussed in Section 6.

6. Model Evaluation & Discussion

1e following subsections discuss the performance of the
models with and without outliers.

6.1. Testing Models with Outliers. 1e three fuzzy logic
models, Sugeno linear, Sugeno constant, and Mamdani,
were tested on four testing datasets from ISBSG and then
compared to the multilinear regression model. 1e resulting
actual and estimated values were examined using the error
criteria: MAE, MBRE, MIBRE, SA, and Δ. Table 8 presents
the results of the comparisons.

Table 2: Description of effort attribute in all datasets.

Dataset N Mean St. dev Min Max Median Skewness Kurtosis
Effort_dataset 1 245 883.6 1486 12 14656 397 5.23 37.17
Effort_dataset 2 116 643 887.3 31 4411 280 2.28 5
Effort_dataset 3 107 367 391 11 2143 254 2.47 6.9
Effort_dataset 4 468 706 1194 11 14656 310 5.8 50.5
Note: N: number of projects; St. dev: standard deviation.
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Figure 1: Boxplot for effort for each dataset.
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Since MAE measures the absolute error between the
estimated and actual value, the model that has the lowest
MAE generated more accurate results. As shown in Table 8,
Sugeno linear FL generated results (bold) had the lowest
MAE among the four datasets. Additional tests using MBRE

and MIBRE criteria were also used to examine the accuracy
of the data results. 1e results, as shown in Table 8, indicate
that Sugeno linear FL outperformed the other models. Also,
SA measures the meaningfulness of the results generated by
the models, and Δmeasures the likelihood that the data were

Data 
preprocessing

Dataset splitting 
training/testing

Feature selection 
using stepwise

regression

MLR 
models

Fuzzy 
logic 

models

ANN 
models

Performance 
analysis with and 
without outliers

Dataset

Figure 2: Block diagram of model design steps.

Table 3: Fuzzy models memberships.

Variable
Model

Mamdani Sugeno constant Sugeno linear Datasets
# of mf Type of mf # of mf Type of mf # of mf Type of mf Data1 Data2 Data3 Data4

AFP (input) 3 Trimf 3 Trimf 3 Trimf Included Included Included Included
Team size (input) 3 Trimf 3 Trimf 3 Trimf Included Included Included Included
Resource level (input) 1 Trapmf 1 Trapmf 1 Trapmf Included Excluded Included Included
Effort (output) 3 Trimf 3 Const. 3 Linear Included Included Included Included

Table 4: Parameters of Fuzzy models for Dataset 1.

Mamdani Sugeno constant Sugeno linear

AFP
Small [−350 0 350] Small [−350 0 350] Small [−350 0 350]

Average [140 820 1500] Average [140 820 1500] Average [140 820 1500]
Large [1200 1.5e+ 04 2e+ 04] Large [1200 1.5e+ 04 2e+ 04] Large [1200 1.5e+ 04 2e+ 04]

Team size
Small [−8 0 8] Small [−8 0 8] Small [−8 0 8]

Average [7 20 33] Average [7 20 33] Average [7 20 33]
Large [30 50 70] Large [30 50 70] Large [30 50 70]

Resource Level 1 One [0.7 0.7 1 1] One [0.7 0.7 1 1] One [0.7 0.7 1 1]
Resource Level 2 NA NA NA

Effort
Small [−2600 0 2600] Small [973] Small [3 116 385 −289]

Average [1500 6000 1.2e+ 04] Average [2882] Average [4 278 633 −1332]
Large [9500 5.6e+ 04 7.84e+ 04] Large [1.242e+ 04] Large [4.3 361 827 −2013]

Table 5: Parameters of Fuzzy models for Dataset2.

Mamdani Sugeno constant Sugeno linear

AFP
Small [−260 0 260] Small [−260 0 260] Small [−260 0 260]

Average [200 1450 2700] Average [200 1450 2700] Average [200 1450 2700]
Large [250 1.5e+ 04 2e+ 04] Large [250 1.5e+ 04 2e+ 04] Large [250 1.5e+ 04 2e+ 04]

Team size
Small [−8 0 8] Small [−8 0 8] Small [−8 0 8]

Average [6 15 24] Average [6 15 24] Average [6 15 24]
Large [20 100 184] Large [20 100 184] Large [20 100 184]

Resource Level 1 NA NA NA
Resource Level 2 NA NA NA

Effort
Small [−3000 0 3000] Small [1100] Small [13.56 15.3 −10.4]

Average [1000 1e+ 04 2.2e+ 04] Average [7000] Average [12.12 135.2 47.7]
Large [1e+04 6.5e+ 04 9.1e+ 04] Large [2e+ 04] Large [12.4 115 111]

8 Computational Intelligence and Neuroscience



generated by chance. Table 8 shows that the Sugeno linear FL
predicted more meaningful results than other techniques
across the four datasets. It is also clear from the SA and delta
tests that the fuzzy Mamdani model does not predict well
when outliers are present, as shown in Table 8.

We also examined the tendency of a model to over-
estimate or underestimate, which was determined by the
mean error (ME). ME was calculated by taking the mean of
the residuals (difference between actual effort and estimated
effort) from each dataset with outliers. As shown in Table 8,
all models tended to overestimate in Dataset 3, three models
overestimated in Dataset 1, and three models under-
estimated in Dataset 2. Surprisingly, Dataset 2 was the only
dataset not containing outliers. Nonetheless, the Sugeno
linear model outperformed the other models. We then
continued to study this problem by repeating the same
process after removing the outliers.

To confirm the validity of results, we applied statistical
tests to examine the statistical characteristics of the esti-
mated values resulting from the models, as shown in
Table 9. We chose the nonparametric Wilcoxon test to
check whether each pair of the proposed models is sta-
tistically different based on the absolute residuals. 1e
rationale for choosing the nonparametric test was because
the absolute residuals were not normally distributed as
confirmed by the Anderson-Darling test. 1e hypothesis
tested was:

H0: 1ere is no significant difference between model(i)
and model(j)
H1: 1ere is a significant difference between model(i)
and model(j)

Table 6: Parameters of Fuzzy models for Dataset 3.

Mamdani Sugeno constant Sugeno linear

AFP
Small [−450 0 450] Small [−450 0 450] Small [−450 0 450]

Average [200 900 1100] Average [200 900 1100] Average [200 900 1100]
Large [892.9 1.5e+ 04 2e+ 04] Large [892.9 1.5e+ 04 2e+04] Large [892.9 1.5e+ 04 2e+ 04]

Team size
Small [−8 0 8] Small [−8 0 8] Small [−8 0 8]

Average [5 25 50] Average [5 25 50] Average [5 25 50]
Large [35 350 645] Large [35 350 645] Large [35 350 645]

Resource Level 1 One [0.7 0.7 1 1] One [0.7 0.7 1 1] One [0.7 0.7 1 1]
Resource Level 2 One [0.7 0.7 1 1] One [0.7 0.7 1 1] One [0.7 0.7 1 1]

Effort

Small [−3000 0 3000] Small [4500] Small [34.7 243 −4331 0 2345]
Average [1000 1e+ 04 2.2e+ 04] Average [1.5e+ 04] Average [22.2 88.4 −1.096e+ 04 0 1.308e+ 04]

Large [1e+04 6.5e+ 04 9.1e+ 04] Large [3.48e+ 04] Large [22.23 80.8 −2.042e+ 04 −2.748e+ 04
2.45e+ 04]

Table 7: Parameters of ANN and MLR models for every dataset.

ANN (feed-forward backprop) MLR

Dataset 1 No. of hidden layers: 1 Y_est�−2674.5 + 752.9xTeam_Size +
1.94xAFP+ 1413.27x“Resource_Level� 1”No. of hidden neurons: 8

Dataset 2 No. of hidden layers: 1 Y_est�−138.5828 +AFP∗ 12.6030
+Team_Size∗ 109.3311No. of hidden neurons: 3

Dataset 3

No. of hidden layers: 1 Y_est� 8630.3198 +AFP∗ 26.9786 +
Team_Size∗ 85.1768 + “Resource_Level
� 1”∗−8082.6417 + “Resource_Level

� 2”∗−13687.4085
No. of hidden neurons: 6

Dataset 4
No. of hidden layers: 1 Y_est� 784.5531 +AFP∗ 5.895416 +

Team_Size∗ 235.3906 +
“Resource_Level� 4”∗ 3121.556No. of hidden neurons: 9

Table 8: Error measures and meaningfulness tests.

MAE MBRE MIBRE SA Δ ME
Dataset 1

MLR_out 2745.8 77 220.6 61 0.3 1129.9
Fuzzy Lin_out 1842.6 31.7 39.5 73.8 0.4 1225.1
Fuzzy Const_out 2779.5 244.9 45.1 60.5 0.3 1599
Fuzzy Mam_out 4118 303.2 55 41.5 0.2 −2454

Dataset 2
MLR_out 1418.6 26.1 19.2 80.9 0.9 −910.2
Fuzzy Lin_out 1342.9 21 16.3 81.9 0.9 −801.6
Fuzzy Const_out 3674.7 85.8 40.2 50.5 0.5 2268.4
Fuzzy Mam_out 3268.8 92.8 37.1 56 0.6 −2219

Dataset 3
MLR_out 7528.6 4.8 34.1 62.6 0.4 3696.3
Fuzzy Lin_out 7241.4 296.6 32.3 64 0.4 2796.3
Fuzzy Const_out 8849.9 82.1 32.2 56.1 0.4 7721.8
Fuzzy Mam_out 9332.2 76.6 37.6 53.7 0.4 2868.6

Dataset 4
MLR_out 5536.3 319.2 49.7 49.6 0.3 285.5
Fuzzy Lin_out 4925.3 176.1 60.9 55.1 0.3 −58.9
Fuzzy Const_out 6646.9 413.5 57.2 39.4 0.2 1141.4
Fuzzy Mam_out 7265.7 334.9 55.2 33.8 0.2 −1759
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If the resulting P value is greater than 0.05, the null
hypothesis cannot be rejected, which indicates that the two
models are not statistically different. On the other hand, if
the P value is less than 0.05, then the null hypothesis is
rejected. Table 9 reports the results of theWilcoxon test, with
test results below 0.05 given in bold. 1e results of Dataset 1
show that Sugeno linear FL was significantly different from
all the other models, while for Datasets 2 and 4, the Sugeno
linear FL & MLR performed similarly, and both were sta-
tistically different from Mamdani and Sugeno constant FL.
For Dataset 3, none of the models performed differently. For
this dataset, based on theWilcoxon test, the models were not
statistically different. 1is is because a heteroscedasticity
problem exists in this dataset. 1e productivity ratio for this
dataset (Dataset 3) was between 20 and 330 as discussed in
Section 4. 1is huge difference in productivity led to the
heteroscedasticity problem and affected the performance of
the models.

One of the tests used to examine the stability of the
models was the Scott-Knott test, which clusters the models
into groups based on data results using multiple compari-
sons in one-way ANOVA [53]. Models were grouped
without overlapping, i.e., without classifying one model into
more than one group. Results were obtained, simply, from
the graphs.

1e Scott-Knott test uses the normally distributed ab-
solute error values of the compared models. 1erefore, if the
values are not normally distributed, a transformation should
take place using the Box-Cox algorithm [54], which was the
case in our study.

1e models to be compared are lined along the x-axis
sorted according to rank, with transformed mean error
showing across the y-axis. 1e farther a model from the y-
axis is, the higher the rank is. 1e vertical lines indicate the
statistical results for each model. Models grouped together

have the same color.1emean of transformed absolute error
is shown as a circle in the dashed line. 1e results of Scott-
Knott tests are shown in Figure 3. 1e Sugeno linear model
was grouped alone in Dataset 1 and, was also the highest
rank in Datasets 1, 2, and 4. In Dataset 3, where there was a
heteroscedasticity issue, the models showed similar behav-
ior. Nevertheless, the Sugeno linear model was among the
highest ranked. MLR was ranked second twice and third
twice, generally showing stable average performance, while
the other FL models did not show stable behavior. 1is
demonstrates that the Sugeno linear model was stable and
provides higher accuracy.

6.2. Testing Models without Outliers. In this section, the
models were examined again to study the effect of outliers on
model performance. 1e outliers were removed from the
four datasets and the same statistical tests and error mea-
surement tools were applied to the generated results. 1e
filtered datasets were then used for testing the models. We
used the interquantile range (IQR) method to determine the
outliers. 1e IQR is defined as IQR�Q3−Q1 where Q3 and
Q1 are the upper and lower quantile, respectively. Any object
that is greater than Q3 + 1.5 IQR or less than Q1− 1.5 IQR
was considered an outlier, since the region between Q1− 1.5
IQR and Q3 + 1.5 IQR contains 99.3% of the objects [55].

An interval plot for mean absolute error was generated
for all the models using the four testing datasets with and
without outliers as depicted in Figure 4. Since the interval
plot was for MAE results, the closer the midpoint of each
variable to zero, the better it performed. Also, the shorter the
interval range, the better and more accurate the results.
1erefore, it can be concluded from the plots that the general
behavior of all the models was improved after removing the
outliers. 1e results were more accurate and the range

Table 9: Wilcoxon test results.

MLR_out Fuzzy Lin_out Fuzzy Const_out Fuzzy Mam_out
Statistical Test (dataset 1)

MLR_out X 0.002824 0.567709 0.007086
Fuzzy Lin_out 0.002824 X 0.007004 1.94E2 06
Fuzzy Const_out 0.567709 0.007004 X 0.001765
Fuzzy Mam_out 0.007086 1.94E2 06 0.001765 X

Statistical test (Dataset 2)
MLR_out X 0.510679 0.012352 0.093017
Fuzzy Lin_out 0.510679 X 0.005372 0.024118
Fuzzy Const_out 0.012352 0.005372 X 0.646882
Fuzzy Mam_out 0.093017 0.024118 0.646882 X

Statistical test (Dataset 3)
MLR_out Fuzzy Lin_out Fuzzy Const_out Fuzzy Mam_out

MLR_out X 0.877285 0.456147 0.643195
Fuzzy Lin_out 0.877285 X 0.456147 0.464303
Fuzzy Const_out 0.456147 0.456147 X 0.177199
Fuzzy Mam_out 0.643195 0.464303 0.177199 X

Statistical test (Dataset 4)
MLR_out X 0.373822 0.004692 0.024525
Fuzzy Lin_out 0.373822 X 0.000591 0.003788
Fuzzy Const_out 0.004692 0.000591 X 0.588519
Fuzzy Mam_out 0.024525 0.003788 0.588519 X
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Figure 3: Scott-Knott test results in datasets with outliers. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4.
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Figure 4: Interval plots for estimated results with and without outliers. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4.
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interval decreased, while the midpoint was closer to zero.
1e Sugeno linear FL model was markedly more accurate
than the other models with or without outliers. It is fair to
note that the MLR model had equivalent behavior to the
Sugeno linear FL in Dataset 2.

To examine the improvement resulting from removal of
the outliers, the same error measures were applied to
datasets without outliers. Table 10 presents the results for
MAE, MBRE, MIBRE, SA, and Δ.

Finally, the mean error (ME) from each dataset was
calculated to check the effect of removing outliers on
overestimating and underestimating project effort. We
noticed that the majority of models tend to underestimate
after removing the outliers. 1is confirms the findings of the
test on the datasets with outliers, where models tended to
overestimate.

1e performance of all models without outliers was
improved, as the data in Table 10 indicates.We conclude that
FL models are sensitive to outliers.

In addition, we examined the effect of outlier removal
using the Scott-Knott test. Figure 5 shows the results of the
Scott-Knott test. Generally, our conclusions about model
stability did not change. However, we noted that the mean
of transformed absolute error decreased. 1is shows that
removing the outliers increases the accuracy of the models.
We conclude that the Sugeno linear FL model was the
superior model, both in the presence and absence of
outliers.

To visualize the effect of the outliers in the result of all
models, a Scatterplot was extracted for the Sugeno linear
model in each dataset (with outliers and without outliers),
where the x-axis is the actual effort and the y-axis is the
estimated effort as shown in Figure 6. It is evident
that removing the outliers decreased the drifting effect
on the linear line generated. Note that Dataset 2 has no
outliers.

To validate the conclusion drawn about Sugeno linear
outperformance in estimating software costs, its results were
compared to Forward Feed Artificial Neural Networkmodel.
1e ANN model created were trained and tested in the 8
datasets that used in this research; 4 with outliers and 4
without outliers. A comparison between the MAE of both
models is shown in Table 11. 1e Fuzzy linear outperformed
the ANN model in all the datasets.

6.3. Answers toResearchQuestions. RQ1: What is the impact
of using regression analysis on tuning the parameters of
fuzzy models?

Based on the results in Section 6, we conclude that
Sugeno linear FL model combined the fuzziness charac-
teristics of fuzzy logic models with the nature of regression
models. 1e different membership functions and rules used
allowed the model to cope with software parameter com-
plexity. 1e Sugeno linear FL model showed stable behavior
and high accuracy compared to the MLR and other models
as shown in Scott-Knott plots. We conclude that regression
analysis can assist in designing fuzzy logic models, especially
the parameters of Sugeno fuzzy with linear output.

RQ2: How might data heteroscedasticity affect the
performance of such models?

A heteroscedasticity issue appears when the productivity
(effort/size) fluctuates among projects in the same dataset.
To see this impact, we divided the datasets into four sets
containing different groups of productivity as described in
Section 4. Heteroscedasticity appeared in the third dataset.
Multiple tests were applied on all the datasets to identify the
difference in performance. We concluded that hetero-
scedasticity had a detrimental effect on the performance of
fuzzy logic models, but when we applied statistical tests, we
found that in those datasets where heteroscedasticity existed,
none of the models were statistically different. However, we
concluded that the Sugeno linear FL model outperformed
other models in the presence and absence of the hetero-
scedasticity issue.

RQ3: How do outliers affect the performance of the
models?

After generating four datasets, we extracted the outliers
from each testing dataset. We then applied the same error
measurements and statistical tests on each, as described in
Section 6.2. We extracted interval plots for mean absolute
error of predicted results with and without outliers as shown
in Figure 4. A general improvement was noticed after re-
moving outliers, since we observed a major decrease in MAE
and the interval range shortened (decreased). Furthermore,
results showed that datasets became more homogenous after
removing the outliers. We also found that the models tend to
underestimate in the presence of outliers and overestimate
when outliers are removed, yet the performance of all
models improved when outliers were removed. Despite the
fact that outliers affect the performance of the models, the
Sugeno linear model still proved to be the best performing
model.

We have proven in this research that the Sugeno linear
fuzzy logic model outperforms other models in the
presence of outliers and absence of outliers and when the
dataset is homogenous or heterogeneous. We mentioned
“the same model for all projects was therefore not prac-
tical,” this is because each model was trained using a
different dataset. To predict the effort of a new project in a
certain organization, the Sugeno linear fuzzy logic model
can be retrained on some historical projects in the same
organization and, thus, can be used to predict future
projects.

7. Threats to Validity

1is section presents threats to the validity of this research,
specifically internal and external validity. Regarding internal
validity, the datasets used in this research work were divided
randomly into training and testing groups, 70% and 30%,
respectively. Although the leave-one-out (LOO) cross val-
idation method is less biased than the random splitting
method [56], the technique was not implemented because of
the difficulty of designing fuzzy logic models with the LOO
method. In order to apply the LOO in our work, more than
1,000 models would have had to be manually generated in
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order to conduct all experiments with and without outliers,
which is extremely difficult to implement. In our case, fuzzy
logic models were designed manually from the training
datasets.

External validity questions whether or not the findings
can be generalized. In this work, four datasets were

generated from the ISBSG dataset with projects ranked A
and B. Moreover, unbiased performance evaluation criteria
and statistical tests were used to affirm the validity of the
results. So, we can conclude that the results of this paper can
be generalized to a large degree. However, using more
datasets would yield more robust results.
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Figure 5: Scott-Knott test results in datasets without outliers. (a) Dataset 1. (b) Dataset 2. (c) Dataset 3. (d) Dataset 4.

Table 10: Error measures and meaningfulness tests for datasets without outliers.

MAE MBRE MIBRE SA Δ ME
Dataset 1

MLR_out 1518.4 72.4 241.7 36.1 0.3 −296.5
Fuzzy Lin_out 720 26.5 39.3 69.7 0.6 26.6
Fuzzy Const_out 1111.3 255.6 44.8 53.2 0.4 −214.5
Fuzzy Mam_out 2834 330.1 56.6 −19.2 0.2 −2774.5

Dataset 2
MLR_out 1418.6 26.1 19.2 80.9 0.9 −910.2
Fuzzy Lin_out 1342.9 21 16.3 81.9 0.9 −801.6
Fuzzy Const_out 3674.7 85.8 40.2 50.5 0.5 2268.4
Fuzzy Mam_out 3268.8 92.8 37.1 56 0.6 −2219

Dataset 3
MLR_out 4742.1 −2.2 33.6 53.2 0.5 513.4
Fuzzy Lin_out 4376.3 2114.9 31.9 56.8 0.6 −528.6
Fuzzy Const_out 4187.5 66.7 28.7 58.7 0.6 2891.3
Fuzzy Mam_out 5608.5 70.7 35.8 44.7 0.5 −1523.9

Dataset 4
MLR_out 3982 333.7 50 32.2 0.3 −1673
Fuzzy Lin_out 3613.7 181.8 62.5 38.5 0.4 −1287
Fuzzy Const_out 4377.7 421.5 56.1 25.4 0.3 −1551
Fuzzy Mam_out 5897.6 348.2 55.9 −0.4 0 −3807
Note: MAE: mean absolute error; SA: for standardized; Δ (delta): effect size, MBRE: mean balance relative, MIBRE: mean inverted balance relative error.
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Figure 6: Continued.
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8. Conclusions

1is paper compared four models: Sugeno linear FL, Sugeno
constant FL, Mamdani FL, and MLR. Models were trained
and tested using four datasets extracted from ISBSG. 1en,
the performance of the models was analyzed by applying
various unbiased performance evaluation criteria and sta-
tistical tests that included: MAE, MBRE, MIBRE, SA, and
Scott-Knott.1en, outliers were removed, and the same tests
were repeated in order to draw a conclusion about superior
models. 1e inputs for all models were software size (AFP),
team size, and resource level, while the output was software
effort. 1ree main questions were posed at the beginning of
the research:

RQ1:What is the impact of using regression analysis on
tuning the parameters of fuzzy models?
RQ2: How might data heteroscedasticity affect the
performance of such models?
RQ3: How do outliers affect the performance of the
models?

Based on the discussions of the results in Section 6, we
conclude the following:

(1) Combining the multiple linear regression concept
with the fuzzy concept, especially in the Sugeno fuzzy

model with linear output, led to a better design of
fuzzy models, especially by learning the optimized
number of model inputs, as well as the parameters
for the fuzzy linear model.

(2) Where a heteroscedasticity problem exists, the
Sugeno fuzzy model with linear output was the best
performing among all models. However, we note
that although the Sugeno linear is the superior
model, it is not statistically different from the
others.

(3) When outliers were removed, the performance of all
the models improved. 1e Sugeno fuzzy model with
linear output did however remain the superior
model.

In conclusion, results showed that the Sugeno fuzzy
model with linear output outperforms Mamdani and Sugeno
with constant output. Furthermore, Sugeno with linear
output was found to be statistically different from the other
models onmost of the datasets usingWilcoxon statistical tests
in the absence of the heteroscedasticity problem. 1e validity
of the results was also confirmed using the Scott-Knott test.
Moreover, results showed that despite heteroscedasticity and
the influence of outliers on the performance of all the fuzzy
logic models, the Sugeno fuzzy model with linear output
remained the model with the best performance.
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(d)

Figure 6: Scatter plots for efforts predicted by FL-Sugeno linear and actual effort with/without the presence of outliers. (a) Dataset 1.
(b) Dataset 2. (c) Dataset 3. (d) Dataset 4.

Table 11: Comparison between Sugeno FL and ANN model based on MAE.

With outliers Without outliers
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 1 Dataset 2 Dataset 3 Dataset 4

Fuzzy Lin_out 1842.61 1342.3 7241.36 4925.23 720.05 1342.92 4376.3 3613.67
ANN_out 2041.65 3208.2 8499.06 5694.96 961.8 3208.23 4399.3 4492.82
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Data Availability

1e dataset used in this study (ISBSG) is publicly available
but not for free. It is copy-righted, and it is illegal to share it
with anyone. However, a detailed algorithm is written in
Section 4 (Datasets) to explain how the datasets are used and
filtered.
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